Skip to main content
Log in

Fast Computation of Fresnel Holograms Employing Difference

  • INFORMATION OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose an approximation method that can calculate the Fresnel hologram 16 times faster than the conventional method. To compute the hologram, an object is assumed to be a collection of self-illuminated points and the fringes from each object point are superposed. The distance between object point and sampling point on the hologram is used to obtain the phase of the light. Since a sampled hologram usually has small pixel intervals, the difference of the distance values between adjacent pixels is also small and its n-th order difference can be assumed to be constant. Therefore, the distance value at a certain pixel can be obtained from its neighbor with simple additions. The distance error can be reduced less that one wavelength with practical parameters. A hologram, which has a horizontal parallax only, 1.3 Mega-pixels and 1,000 object points, can be calculated in less than one second with a personal computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. St. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa and J. Underkoffler: Proc. Soc. Photo-Opt. Instrum. Eng. 1212 (1990) 174.

  2. K. Taima, H. Ueda, H. Okamoto, T. Kubota, Y. Kajiki, T. Nakamura, H. Nishida, H. Takahashi and E. Shimizu: Proc. Soc. Photo-Opt. Instrum. Eng. 2176 (1994) 23.

    Google Scholar 

  3. J. A. Watlington, M. Lucente, C. J. Sparrell, V. M. Bove and I. Tamitani: Proc. Soc. Photo-Opt. Instrum. Eng. 2406 (1995) 172.

    Google Scholar 

  4. T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato and T. Honda: Proc. Soc. Photo-Opt. Instrum. Eng. 2577 (1995) 33.

    Google Scholar 

  5. M. Lucente: J. Electron. Imaging 2 (1993) 28.

    Google Scholar 

  6. H. Yoshikawa and H. Kameyama: Proc. Soc. Photo-Opt. Instrum. Eng. 2406 (1995) 226.

  7. M. Lucente: Opt. Eng. 35 (1996) 1529.

    Google Scholar 

  8. H. Yoshikawa, S. Iwase and T. Oneda: Proc. Soc. Photo-Opt. Instrum. Eng. 3956 (2000) 48.

  9. J. P. Waters: Appl. Phys. Lett. 9 (1996) 405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yoshikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, H. Fast Computation of Fresnel Holograms Employing Difference. OPT REV 8, 331–335 (2001). https://doi.org/10.1007/s10043-001-0331-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-001-0331-y

Key words

Navigation